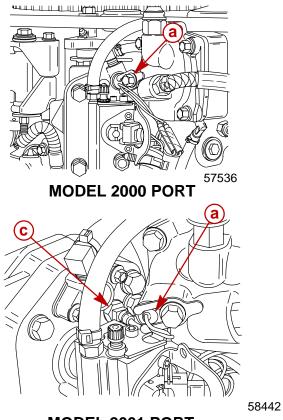
POWERHEAD Section 4B - Cooling

Table of Contents

Specifications 4B-2
Water Pressure 4B-2
Thermostat 4B-2
Temperature Sensor 4B-2
Special Tools 4B-3
Temperature Sensor 4B-3
2.5 Liter Optimax/DFI Water Flow 4B-5
Description 4B-5
Water Flow Diagram 4B-7

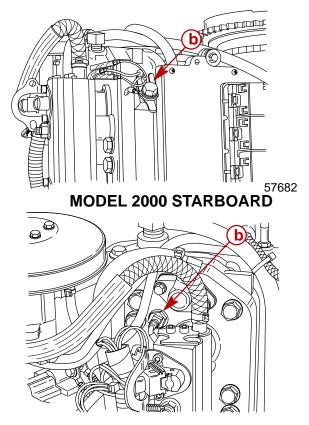
Troubleshooting	. 4B-9
Thermostat Test	. 4B-9
Water Pressure Check	4B-10
Cooling Water Strainer	4B-10
Water Pressure Sensor	4B-11
Water Pump Cleaning and Inspection	4B-12
Problem Diagnosis	4B-13

Specifications


Water Pressure

Idle	1.0 – 3.0 PSI (6.8 – 20.5 kPa)
Poppet Valve Opening	4 – 9 PSI (27.4 – 61.6 kPa)
W.O.T.	12.0 PSI (82.1 kPa) Minimum

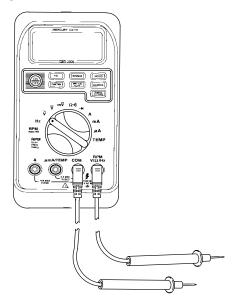
Thermostat 143°F (61.7°C)


Temperature Sensor

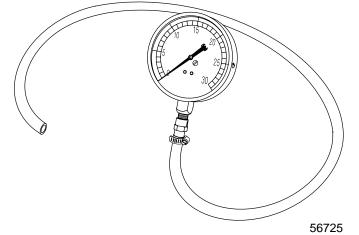
Temperature Sensor(s)			
Between Black and No each TAN/BLK wire. Continuity			
Between each lead and ground	No Continuity		

MODEL 2001 PORT

- a Air Compressor Temperature Sensor Activates at 221°F (105°C) – Horn activation only
- b Starboard Cylinder Head Temperature Sensor – Activates at 221°F (105°C) – Horn Activation and Speed Reduction


MODEL 2001 STARBOARD

58441


 Port Cylinder Head Temperature Sensor – Activates at 221°F (105°C) – Horn Activation and Speed Reduction

1. DMT 2000 Digital Tachometer Multi-meter P/N 91-854009A1

2. Water Pressure Gauge 91-79250A2

Temperature Sensor

NOTE: Model Year 2000 – The air compressor temperature sensor and cylinder head temperature sensors are the same part number. The ECM has been programmed to activate a warning circuit at different temperatures depending upon sensor location.

NOTE: The Digital Diagnostic Terminal (DDT) can be used to monitor temperature readings from both temperature sensors.

Model Year 2000 – Two (2) temperature sensors are used to provide cylinder head temperature information to the ECM. One sensor is mounted in the starboard cylinder head and one in the air compressor cylinder head.

Model Year 2001 – Three (3) temperature sensors are used to provide temperature information to the ECM. One sensor is mounted in each cylinder head and one sensor is mounted in the air compressor cylinder head.

The ECM uses this information to increase injector pulse width for cold starts and to retard timing in the event of an over-heat condition.

An ohms test of the temperature sensor would be as follows:

MODEL YEAR 2000 – Insert digital or analog ohmmeter test leads into both TAN/BLACK sensor leads. With engine at temperature (F°) indicated, ohm readings should be as indicated $\pm 10\%$. There should be no continuity between BLACK and each TAN/BLACK lead and no continuity between each TAN/BLACK lead and ground.

MODEL YEAR 2001 – Disconnect temperature sensor harness and check continuity with digital or analog ohmmeter test leads between both connector pins. With engine at temperature (F°) indicated, ohm readings should be as indicated $\pm 10\%$. There should be no continuity between each connector pin and ground.

М	ODEL YEAR 200	00	N	IODEL YEAR 200	01
F	С		F	С	
257	125	34	257	125	340
248	120	38	248	120	390
239	115	44	239	115	450
230	110	51	230	110	517
221	105	59	221	105	592
212	100	68	212	100	680
203	95	79	203	95	787
194	90	92	194	90	915
185	85	107	185	85	1070
176	80	126	176	80	1255
167	75	148	167	75	1480
158	70	175	158	70	1752
149	65	208	149	65	2083
140	60	248	140	60	2488
131	55	298	131	55	2986
122	50	360	122	50	3603
113	45	436	113	45	4370
104	40	532	104	40	5327
95	35	653	95	35	6530
86	30	805	86	30	8056
77	25	1000	77	25	10000
68	20	1250	68	20	12493
59	15	1573	59	15	15714
50	10	1993	50	10	19903
41	5	2546	41	5	25396
32	0	3277	32	0	32654
14	-10	5579	14	-10	55319
5	-15	7372	5	-15	72940

2.5 Liter Optimax/DFI Water Flow

Description

Cooling water enters the cooling system through the lower unit water inlets. The pump assembly forces water through the water tube and exhaust adapter plate passages filling the power head central water chamber (located behind the exhaust cavity). Water enters the exhaust cover cavity through 2 holes near the top of the exhaust cover.

Water exits the exhaust cover cavity through 4 slots (2 each side) filling the water passages around the cylinders. Water flows around each bank of cylinders to the top of the cylinder block.

Water flow exiting the cylinder block is controlled by the thermostats (1 in each cylinder head) and the poppet valve (located at the bottom starboard side of powerhead). At low RPM (below 1500 RPM), the thermostats control water flow depending upon engine temperature. When the thermostats are open, water passes through the cylinder heads and exits to the drive shaft housing. At higher RPM (above 1500 RPM) the poppet valve will control the water flow.

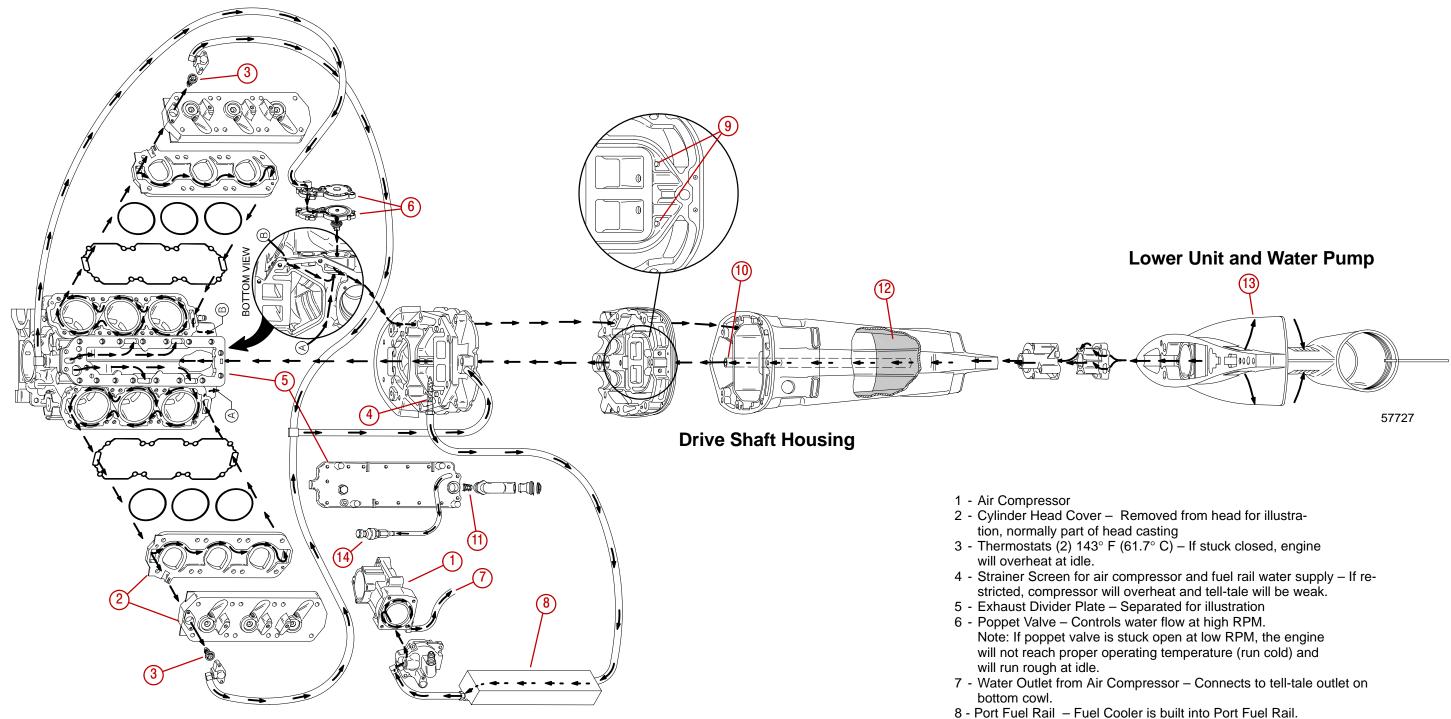
Water that passes through the poppet valve enters water passages in the adaptor plates. Water passes through the adaptor plates into the driveshaft housing.

Water dumped into the drive shaft housing builds up a wall of water around the exhaust tube. This performs 2 functions:

- Helps silence the exhaust
- Prevents air from being drawn into the pump

Water exits the engine in 3 locations:

- Excess water from the wall of water exits around anodes on the gear housing.
- Water that passes through the air compressor exits out the tell tail.
- Water exits through two 1/8 in. (3.175 mm) holes in the lower adaptor plate into the exhaust.


To allow complete passage filling and to prevent steam pockets, all cooling passages are interconnected. Small passages are incorporated to allow the cooling system to drain.

COOLING

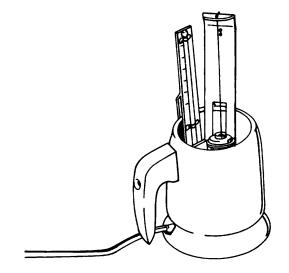
Notes:

Cylinder Block and Adaptor Plate

around anodes. 14- Block Water Pressure Sensor

10- Water Tube

9 - Water Dump Holes Exhaust Cooling (2 each) 1/8 in. (3.175 mm) - If holes are plugged, tuner pipe will melt and bearing carrier prop shaft seals will be damaged.


11- Check Valve for powerhead flush. 12- Wall of Water - If water level height is insufficient, water pump may draw in air resulting in an overheated engine. 13- Excess water from wall of water around exhaust bucket exits

Troubleshooting

Thermostat Test

- 1. Inspect thermostat covers and cylinder head covers (thermostat opening) for cracks and corrosion damage that could cause leakage. Replace parts as necessary.
- 2. Remove and discard gasket from each thermostat.
- 3. Wash thermostats with clean water.
- 4. Using a thermostat tester, similar to the one shown, test each thermostat as follows:
 - a. Open thermostat valve, then insert a thread between valve and thermostat body. Allow valve to close against thread.
 - b. Suspend thermostat (from thread) and thermometer inside tester so that neither touches the container. Bottom of thermometer must be even with bottom of thermostat to obtain correct temperature of thermostat opening.
 - c. Fill thermostat tester with water to cover thermostat.
 - d. Plug tester into electrical outlet.
 - e. Observe temperature at which thermostat begins to open. (Thermostat will drop off thread, that was installed in Step "a", when it starts to open.) Thermostat must begin to open when temperature reaches 140°-145° F (60°-63° C).
 - f. Continue to heat water until thermostat is completely open.
 - g. Unplug thermostat tester.
 - h. Replace thermostat, if it fails to open at the specified temperature, or if it does not fully open.

NOTE: BE SURE that water in thermostat tester is allowed to cool sufficiently [below 110° F (43.3° C)] before testing the other thermostat.

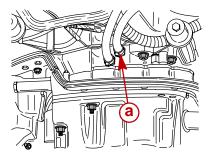
51087

IMPORTANT: DO NOT operate engine without thermostats installed.

Water pressure may be checked by one of three methods;

- Use a Digital Diagnostic Terminal (DDT) [91-823686A2]
- On engines equipped with Omega gauges, water pressure is an available readout.
- On engines not equipped with Omega gauges, a water pressure line is provided that exits at the front of the lower cowl. A dash style gauge may be connected to this line to register water pressure.

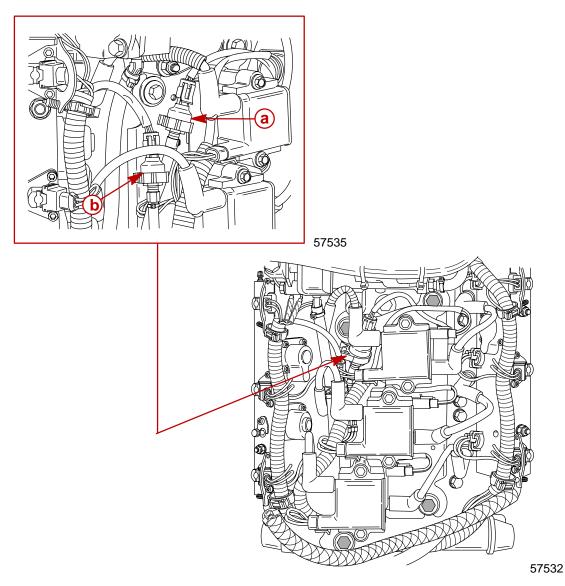
WARNING


Shut off engine and refer to troubleshooting chart if water pressure is not within specification. DO NOT exceed 3000 RPM in neutral.

Idle	1.0 – 3.0 PSI (6.8 – 20.5 kPa)
Poppet Valve Opening	4 – 9 PSI (27.4 – 61.6 kPa)
W.O.T.	12.0 PSI (82.1 kPa) Minimum

Cooling Water Strainer

The cooling water strainer filters cooling water flowing to the port fuel rail and air compressor.


- 1. Remove bottom cowl. Disconnect water hose from the strainer plug.
- 2. Remove and clean strainer.
- 3. Apply Loctite Pipe Sealant w/Teflon (92-88504) to strainer threads and reinstall strainer. Reconnect water hose and secure with sta-strap.

57543

a - Water Strainer

Water Pressure Sensor

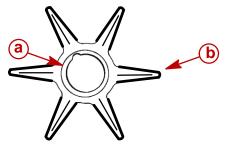
a - Water Pressure Sensor (TAN housing)

b - Speedometer Pressure Sensor (Optional) (BLACK housing)

The water pressure sensor is monitored by the ECM at 1200 rpm and above on Model Year 2000 engines and at 2750 rpm and above on Model Year 2001 engines. Should the low water pressure continue for more than 5 seconds, a speed reduction circuit* within the ECM will be activated.

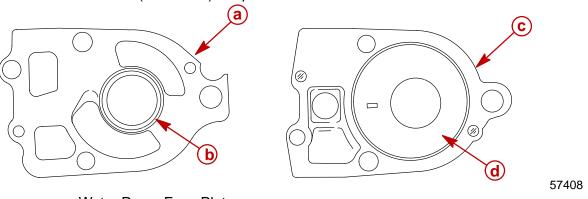
*The Guardian System will limit rpm if temperatures are high regardless of system pressure.

Water Pressure Low for more than 2 seconds	Warning horn activated Warning light illuminated (If Equipped)
Water Pressure Low for more than 5 seconds	Warning horn activated Warning light illuminated (If Equipped) Maximum engine rpm limited



Water Pump Cleaning and Inspection

1. Inspect the water tube coupling for wear or damage. If necessary replace..


- a Water Tube Coupling
- 2. Inspect the water pump impeller for wear on the end, top and bottom of the impeller blades. Replace the impeller if this condition is found.
- 3. Inspect for proper bonding between the hub and the impeller. Replace the impeller if improper bonding is found.

- a Hub
- **b** Impeller
- 4. Inspect the impeller blades to see if they are cracked, burnt, hard or deformed. Replace the impeller if the blades are in this condition.

IMPORTANT: The circular groove formed by the impeller sealing bead should be disregarded when inspecting cover and plate. The depth of the groove will not affect water pump output.

5. Replace cover if plastic is melted from excessive heat (lack of water). Replace stainless insert and/or face plate if grooves (other than impeller sealing bead groove) are more than 0.010 in. (0.254 mm) deep.

- a Water Pump Face Plate
- **b** Sealing Groove (disregard)
- **c** Water Pump Cover
- d Stainless Insert [discard if grooves exceed 0.010 in. (0.254 mm)]

IMPORTANT: It is recommended that all seals and gaskets be replaced (as a normal repair procedure) to assure effective repair.

IMPORTANT: It is recommended that the water pump impeller be replaced whenever the gearcase is removed for maintenance. However, if it is necessary to re-use the impeller, DO NOT install in reverse to original rotation as premature impeller failure will occur.

Problem Diagnosis

NOTE: The Guardian System will limit power if temperatures are high regardless of system pressures.

Condition	Recommended Range	Possible Cause
Pressure below specification @ idle	1.0 – 3.0 PSI (6.8 – 20.5 kPa)	 Poppet valve spring defective (weak, broken, missing) Defective poppet valve seal Thermostat stuck open Severe internal leak Low output water pump Inlet restriction Strainer screen for air compressor water supply is restricted
Pressure above 5 psi (34.2kPa) @ idle	1.0 – 3.0 PSI (6.8 – 20.5 kPa)	•Plugged poppet by-pass pas- sage or tell-tale
Pressure does not drop between 1000 – 2500 RPM indicating pop- pet valve has opened	4 – 9 PSI (27.4 – 61.6 kPa) be- tween 1000 – 2200 RPM	 Wrong poppet valve spring Low output water pump Inlet restriction Poppet valve vent hole plugged or restricted Severe internal leak Defective poppet valve seal
Poppet valve flutter/water pres- sure drop does not stabilize prior to 2500 RPM	4 – 9 PSI (27.4 – 61.6 kPa) be- tween 1000 – 2200 RPM	 Wrong poppet valve spring Low output water pump Inlet restriction Broken diaphragm in poppet valve Severe internal leak Defective poppet valve seal
Pressure is below minimum spec- ification @ W.O.T.	12 PSI (54.9 – 68.5kPa)	 Inlet restriction Engine mounted too high on transom Engine trimmed out too far Configuration of boat bottom in- terfering with adequate flow of water to coolant inlets Severe internal leak Low output water pump Plugged strainer screen for port fuel rail and air compressor water supply
Pressure higher than normal @ W.O.T., but engine still indicates overheat condition	Maximum pressure – 23 PSI (157.4 kPa)	•Outlet water passages restricted. •Steam pocket has formed at top of powerhead due to lack of cool- ing water